Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study evaluates a popular density current propagation speed equation using a large, novel set of radiosonde and dropsonde observations. Data from pairs of sondes launched inside and outside of cold pools along with the theoretical density current propagation speed equation are used to calculate sonde-based propagation speeds. Radar-/satellite-based propagation speeds, assumed to be the truth, are calculated by manually tracking the propagation of cold pools and correcting for advection due to the background wind. Several results arise from the comparisons of the theoretical sonde-based speeds with the radar-/satellite-based speeds. First, sonde-based and radar-based propagation speeds are strongly correlated for U.S. High Plains cold pools, suggesting the density current propagation speed equation is appropriate for use in midlatitude continental environments. Second, cold pool Froude numbers found in this study are in agreement with previous studies. Third, sonde-based propagation speeds are insensitive to how cold pool depth is defined since the preponderance of negative buoyancy is near the surface in cold pools. Fourth, assuming an infinite channel depth and assuming an incompressible atmosphere when deriving the density current propagation speed equation can increase sonde-based propagation speeds by up to 20% and 11%, respectively. Finally, sonde-based propagation speeds can vary by ∼300% based on where and when the sondes were launched, suggesting submesoscale variability could be a major influence on cold pool propagation.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract Tornadoes in Chile seem to develop in what are called “high-shear, low-CAPE” (HSLC) environments. An analysis of convective parameters from the ERA5 reanalysis during 16 notable tornadoes in Chile showed that several increased markedly before the time of the reports. The significant tornado parameter (STP) was able to discriminate the timing and location of the tornadoes, even though it was not created with that goal. We established thresholds for the severe hazards in environments with reduced buoyancy (SHERBE) parameter (≥1) and the STP (≤−0.3) to further identify days favorable for tornado activity in Chile. The SHERBE and STP parameters were then used to conduct a climatological analysis from 1959 to 2021 of the seasonal, interannual, and latitudinal variations of the environments that might favor tornadoes. Both parameters were found to have a strong annual cycle. The largest magnitudes of STP were found to be generally confined to south-central Chile, in agreement with the (sparse) tornado record. The probability of a day with both SHERBE and STP values beyond their thresholds was greatest between May and August, which aligns with the months with the most tornado reports. The number of days with both SHERBE and STP beyond their respective thresholds was found to fluctuate interannually. This result warrants further study given the known interannual variability of synoptic and mesoscale weather in Chile. The results of this study extend our understanding of tornado environments in Chile and provide insight into their spatiotemporal variability.more » « less
-
Abstract A multiscale analysis of the environment supporting tornadoes in southeast South America (SESA) was conducted based on a self-constructed database of 74 reports. Composites of environmental and convective parameters from ERA5 were generated relative to tornado events. The distribution of the reported tornadoes maximizes over the Argentine plains, while events are rare close to the Andes and south of Sierras de Córdoba. Events are relatively common in all seasons except in winter. Proximity environment evolution shows enhanced instability, deep-layer vertical wind shear, storm-relative helicity, reduced convective inhibition, and a lowered lifting condensation level before or during the development of tornadic storms in SESA. No consistent signal in low-level wind shear is seen during tornado occurrence. However, a curved hodograph with counterclockwise rotation is present. The Significant Tornado Parameter (STP) is also maximized prior to tornadogenesis, most strongly associated with enhanced CAPE. Differences in the convective environment between tornadoes in SESA and the U.S. Great Plains are discussed. On the synoptic scale, tornado events are associated with a strong anomalous trough crossing the southern Andes that triggers lee cyclogenesis, subsequently enhancing the South American low-level jet (SALLJ) that increases moisture advection to support deep convection. This synoptic trough also enhances vertical shear that, along with enhanced instability, sustains organized convection capable of producing tornadic storms. At planetary scales, the tornadic environment is modulated by Rossby wave trains that appear to be forced by convection near northern Australia. Madden–Julian oscillation phase 3 preferentially occurs 1–2 weeks ahead of tornado occurrence. Significance StatementThe main goal of this study is to describe what atmospheric conditions (from local to global scales) are present prior to and during tornadic storms impacting southeast South America (SESA). Increasing potential for deep convection, wind shear, and potential for rotating updrafts, as well as reducing convective inhibition and cloud-base height, are predominant a few hours before and during the events in connection to low-level northerly winds enhancing moisture transport to the region. Remote convective activity near northern Australia appears to influence large-scale atmospheric circulation that subsequently triggers convective storms supporting tornadogenesis 1–2 weeks later in SESA. Our findings highlight the importance of accounting for atmospheric processes occurring at different scales to understand and predict tornado occurrences.more » « less
An official website of the United States government
